Abstract
In this work, we present a mathematical model for the emergence of descriptive norms, where the individual decision problem is formalized with the standard Bayesian belief revision machinery. Previous work on the emergence of descriptive norms has relied on heuristic modeling. In this paper we show that with a Bayesian model we can provide a more general picture of the emergence of norms, which helps to motivate the assumptions made in heuristic models. In our model, the priors formalize the belief that a certain behavior is a regularity. The evidence is provided by other group members’ behavior and the likelihood by their reliability. We implement the model in a series of computer simulations and examine the group-level outcomes. We claim that domain-general belief revision helps explain why we look for regularities in social life in the first place. We argue that it is the disposition to look for regularities and react to them that generates descriptive norms. In our search for rules, we create them.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Postprint |
Keywords: | Descriptive norms; Norm emergence; Explanation; Social epistemology; Agent-based modeling |
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP)
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Philosophy of Science Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Ethics and Value Theory |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie |
ISSN: | 0039-7857 |
Sprache: | Englisch |
Dokumenten ID: | 24638 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Apr. 2015, 04:43 |
Letzte Änderungen: | 04. Nov. 2020, 13:06 |