DeutschClear Cookie - decide language by browser settings
Wilets, Larry; Hartmann, Stephan; Tang, Ping (April 1997): The Chromodielectric Soliton Model: Quark Self-energy and Hadron Bags. In: Phys. Rev. C, Vol. 55: pp. 2067-2077
Full text not available from 'Open Access LMU'.


The chromodielectric soliton model is Lorentz and chirally invariant. It has been demonstrated to exhibit dynamical chiral symmetry breaking and spatial confinement in the locally uniform approximation. We here study the full nonlocal quark self-energy in a color-dielectric medium modeled by a two-parameter Fermi function. Here color confinement is manifest. The self-energy thus obtained is used to calculate quark wave functions in the medium which, in turn, are used to calculate the nucleon and pion masses in the one-gluon-exchange approximation. The nucleon mass is fixed to its empirical value using scaling arguments; the pion mass (for massless current quarks) turns out to be small but nonzero, depending on the model parameters.