Abstract
Besides the usual business of solving paradoxes, there has been recent philosophical work on their essential nature. Lycan characterises a paradox as “an inconsistent set of propositions, each of which is very plausible.” Building on this definition, Paseau offers a numerical measure of paradoxicality of a set of principles: a function of the degrees to which a subject believes the principles considered individually (all typically high) and of the degree to which the subject believes the principles considered together (typically low). We argue (a) that Paseau's measure fails to score certain paradoxes properly and (b) that this failure is not due to the particular measure but rather that any such function just of credences fails to adequately capture paradoxicality. Our analysis leads us to conclude that Lycan's definition also fails to capture the notion of paradox.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Postprint |
Keywords: | paradox, measure, credence |
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP)
Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Logic Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Epistemology |
Themengebiete: | 100 Philosophie und Psychologie > 120 Epistemologie
100 Philosophie und Psychologie > 160 Logik |
ISSN: | 2161-2234 |
Sprache: | Englisch |
Dokumenten ID: | 28356 |
Datum der Veröffentlichung auf Open Access LMU: | 30. Jun. 2016, 08:11 |
Letzte Änderungen: | 04. Nov. 2020, 13:07 |