Abstract
Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and similar to 5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (similar to 10(12) V m(-1)) and magnetic (similar to 10(4) T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-33955-9 |
ISSN: | 2041-1723 |
Sprache: | Englisch |
Dokumenten ID: | 33955 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Feb. 2017, 16:02 |
Letzte Änderungen: | 08. Mai 2024, 08:40 |