Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase constitutively expressed by acute myeloid leukaemia (AML) blasts. In addition, 25% of AML patients harbour a FLT3-ITD mutation, associated with inferior outcome due to increased relapse rate. Relapse might be propagated by interactions between AML blasts and the bone marrow microenvironment. Besides cellular elements of the microenvironment (e.g. mesenchymal stromal cells),bone marrow hypoxia has emerged as an additional crucial component. Hence, effects of hypoxia on FLT3 expression and biology could provide novel insight into AML biology. Here we show that 25% of AML patients down-regulate FLT3 expression on blasts in response to in vitro hypoxia (1% O-2),which was independent of its mutational state. While virtually no AML cell lines regulate FLT3 in response to hypoxia, the down-regulation could be observed in Ba/F3 cells stably transfected with different FLT3 mutants. Hypoxia-mediated down-regulation was specific for FLT3, reversible and proteasome-dependent;with FLT3 half-life being significantly shorter at hypoxia. Also, PI-3K inhibition could partially abrogate down-regulation of FLT3. Hypoxia-mediated down-regulation of FLT3 conferred resistance against cytarabine in vitro. In conclusion, FLT3 expression in AML is dependent on the oxygen partial pressure, but response to hypoxia differs.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-33964-9 |
ISSN: | 2045-2322 |
Language: | English |
Item ID: | 33964 |
Date Deposited: | 15. Feb 2017, 16:02 |
Last Modified: | 04. Nov 2020, 13:11 |