Abstract
We consider a spin-1/2 fermionic ladder with spin-orbit coupling and a perpendicular magnetic field, which shares important similarities with topological superconducting wires. We fully characterize the symmetry-protected topological phase of this ladder through the identification of fractionalized edge modes and non-trivial spin winding numbers. We propose an experimental scheme to engineer such a ladder system with cold atoms in optical lattices, and we present two protocols that can be used to extract the topological signatures from density and momentum-distribution measurements. We then consider the presence of interactions and discuss the effects of a contact on-site repulsion on the topological phase. We find that such interactions could enhance the extension of the topological phase in certain parameters regimes.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
URN: | urn:nbn:de:bvb:19-epub-34056-6 |
ISSN: | 1367-2630 |
Language: | English |
Item ID: | 34056 |
Date Deposited: | 15. Feb 2017, 16:03 |
Last Modified: | 08. May 2024, 08:40 |