Logo Logo
Switch Language to German

Mazza, Leonardo; Aidelsburger, Monika; Tu, Hong-Hao; Goldman, Nathan and Burrello, Michele (2015): Methods for detecting charge fractionalization and winding numbers in an interacting fermionic ladder. In: New Journal of Physics, Vol. 17, 105001 [PDF, 1MB]

[thumbnail of 10.1088_1367-2630_17_10_105001.pdf]

Download (1MB)


We consider a spin-1/2 fermionic ladder with spin-orbit coupling and a perpendicular magnetic field, which shares important similarities with topological superconducting wires. We fully characterize the symmetry-protected topological phase of this ladder through the identification of fractionalized edge modes and non-trivial spin winding numbers. We propose an experimental scheme to engineer such a ladder system with cold atoms in optical lattices, and we present two protocols that can be used to extract the topological signatures from density and momentum-distribution measurements. We then consider the presence of interactions and discuss the effects of a contact on-site repulsion on the topological phase. We find that such interactions could enhance the extension of the topological phase in certain parameters regimes.

Actions (login required)

View Item View Item