Abstract
In many instances of holographic correspondences between a d-dimensional boundary theory and a (d+1)-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (d-1)-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincare-Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Physik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
| URN: | urn:nbn:de:bvb:19-epub-34162-4 |
| ISSN: | 0370-2693 |
| Sprache: | Englisch |
| Dokumenten ID: | 34162 |
| Datum der Veröffentlichung auf Open Access LMU: | 15. Feb. 2017 16:03 |
| Letzte Änderungen: | 08. Mai 2024 08:41 |

