Abstract
In many instances of holographic correspondences between a d-dimensional boundary theory and a (d+1)-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (d-1)-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincare-Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-34162-4 |
ISSN: | 0370-2693 |
Sprache: | Englisch |
Dokumenten ID: | 34162 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Feb. 2017, 16:03 |
Letzte Änderungen: | 08. Mai 2024, 08:41 |