Abstract
The influence of phase-modulation on femtosecond time-resolved coherent Raman scattering is investigated theoretically and experimentally. The coherent Raman signal taken as a function of the spectral position shows unexpected temporal oscillations close to time zero. A theoretical analysis of the coherent Raman scattering process indicates that the femtosecond light pulses are amplitude and phase modulated. The pulses are asymmetric in time with more slowly decaying trailing wings. The phase of the pulse amplitude contains quadratic and higher-order contributions.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
URN: | urn:nbn:de:bvb:19-epub-3556-3 |
ISSN: | 0946-2171 |
Item ID: | 3556 |
Date Deposited: | 25. Apr 2008, 10:34 |
Last Modified: | 08. May 2024, 08:12 |