Logo Logo
Switch Language to German
Habermann, Felix A.; André, Sabine; Kaltner, Herbert; Kübler, Dieter; Sinowatz, Fred; Gabius, Hans-Joachim (2011): Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy. In: Histochemistry and Cell Biology, Vol. 135, No. 6: pp. 539-552
Full text not available from 'Open Access LMU'.


Gene divergence has given rise to the galectin family of mammalian lectins. Since selective binding to distinct β-galactosides underlies the known bioactivities of galectins, they could find application in cyto- and histochemistry. The pertinent question on the characteristics of their individual reactivity profiles therefore needs to be answered. Toward this end, comparative studies of a panel of galectins in defined systems are required. We here characterise the staining profiles of seven human lectins as well as five natural derivatives originating from proteolytic truncation and serine phosphorylation and one engineered variant. As test system, bovine germinal vesicle oocytes with their glycoprotein envelope (zona pellucida), which presents bi- to tetraantennary complex-type N-glycans with N-acetyllactosamine repeats and core fucosylation, were processed. Technically, confocal laser scanning microscopy was used, first with plant lectins to map the sialylation status. Hereby, α2,3/6-sialylation was detected in the superficial filamentous meshwork of the zona pellucida, while sialic acid-free glycan chains were found to characterise the main inner part of the compact layer of the zona pellucida. Galectin staining was specific and non-uniform. Significant differences in reactivity were detected for the superficial filamentous meshwork and the compact layer of the zona pellucida between galectins-1 to -4 versus galectins-8 and -9. The typical staining profiles intimate a spatially organised display of N-glycans in the different layers of the zona pellucida, underscoring the potential of galectins as cyto- and histochemical tools. Our results encourage further comparative analysis and research to trace the underlying structural and/or topological properties.