Abstract
Dihydropyridine-sensitive voltage-dependent L-type calcium channels are critical to excitation-secretion and excitation-contraction coupling. The channel molecule is a complex of the main, pore-forming subunit alpha 1 and four additional subunits: alpha 2, delta, beta, and gamma (alpha 2 and delta are encoded by a single messenger RNA). The alpha 1 subunit messenger RNA alone directs expression of functional calcium channels in Xenopus oocytes, and coexpression of the alpha 2/delta and beta subunits enhances the amplitude of the current. The alpha 2, delta, and gamma subunits also have pronounced effects on its macroscopic characteristics, such as kinetics, voltage dependence of activation and inactivation, and enhancement by a dihydropyridine agonist. In some cases, specific modulatory functions can be assigned to individual subunits, whereas in other cases the different subunits appear to act in concert to modulate the properties of the channel.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy |
Subjects: | 500 Science > 540 Chemistry |
URN: | urn:nbn:de:bvb:19-epub-3644-2 |
Item ID: | 3644 |
Date Deposited: | 30. Apr 2008, 11:31 |
Last Modified: | 04. Nov 2020, 12:47 |