Logo Logo
Hilfe
Hilfe
Switch Language to English

Danecka, Marta K.; Woidy, Mathias; Zschocke, Johannes; Feillet, Francois; Muntau, Ania C. und Gersting, Søren W. (2015): Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. In: Journal of Medical Genetics, Bd. 52, Nr. 3: S. 175-185 [PDF, 5MB]

[thumbnail of 175.full.pdf]
Vorschau
Download (5MB)

Abstract

Background: In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. Methods: A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Results: Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. Conclusions: The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria.

Dokument bearbeiten Dokument bearbeiten