Abstract
We study risk-minimization for a large class of insurance contracts. Given that the individual progress in time of visiting an insurance policy's states follows an F-doubly stochastic Markov chain, we describe different state-dependent types of insurance benefits. These cover single payments at maturity, annuity-type payments and payments at the time of a transition. Based on the intensity of the F-doubly stochastic Markov chain, we provide the Galtchouk-Kunita-Watanabe decomposition for a general insurance contract and specify risk-minimizing strategies in a Brownian financial market setting. The results are further illustrated explicitly within an affine structure for the intensity.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-37607-2 |
ISSN: | 2227-9091 |
Sprache: | Englisch |
Dokumenten ID: | 37607 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Mai 2017, 13:09 |
Letzte Änderungen: | 22. Feb. 2024, 09:04 |