Logo Logo
Hilfe
Hilfe
Switch Language to English
Morris, James; Straube, Andreas; Diener, Hans-Christoph; Ahmed, Fayyaz; Silver, Nicholas; Walker, Simon; Liebler, Eric; Gaul, Charly (2016): Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache. In: Journal of Headache and Pain, Vol. 17, 43
[img]
Vorschau
1MB

Abstract

Background: Cluster headache (CH) is a debilitating condition that is generally associated with substantial health care costs. Few therapies are approved for abortive or prophylactic treatment. Results from the prospective, randomised, open-label PREVA study suggested that adjunctive treatment with a novel non-invasive vagus nerve stimulation (nVNS) device led to decreased attack frequency and abortive medication use in patients with chronic CH (cCH). Herein, we evaluate whether nVNS is cost-effective compared with the current standard of care (SoC) for cCH. Methods: A pharmacoeconomic model from the German statutory health insurance perspective was developed to estimate the 1-year cost-effectiveness of nVNS + SoC (versus SoC alone) using data from PREVA. Short-term treatment response data were taken from the clinical trial;longer-term response was modelled under scenarios of response maintenance, constant rate of response loss, and diminishing rate of response loss. Health-related quality of life was estimated by modelling EQ-5D T data from PREVA;benefits were defined as quality-adjusted life-years (QALY). Abortive medication use data from PREVA, along with costs for the nVNS device and abortive therapies (i.e. intranasal zolmitriptan, subcutaneous sumatriptan, and inhaled oxygen), were used to assess health care costs in the German setting. Results: The analysis resulted in mean expected yearly costs of (sic)7096.69 for nVNS + SoC and (sic)7511.35 for SoC alone and mean QALY of 0.607 for nVNS + SoC and 0.522 for SoC alone, suggesting that nVNS generates greater health benefits for lower overall cost. Abortive medication costs were 23 % lower with nVNS + SoC than with SoC alone. In the alternative scenarios (i.e. constant rate of response loss and diminishing rate of response loss), nVNS + SoC was more effective and cost saving than SoC alone. Conclusions: In all scenarios modelled from a German perspective, nVNS was cost-effective compared with current SoC, which suggests that adjunctive nVNS therapy provides economic benefits in the treatment of cCH. Notably, the current analysis included only costs associated with abortive treatments. Treatment with nVNS will likely promote further economic benefit when other potential sources of cost savings (e.g. reduced frequency of clinic visits) are considered.