Abstract
IntroductionA geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. MethodsA dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. ResultsParameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. ConclusionsThe geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-38034-5 |
ISSN: | 2162-3279 |
Sprache: | Englisch |
Dokumenten ID: | 38034 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Mai 2017, 13:11 |
Letzte Änderungen: | 04. Nov. 2020, 14:45 |