Logo Logo
Hilfe
Hilfe
Switch Language to English

Salacz, Michael E.; Kast, Richard E.; Saki, Najmaldin; Brüning, Ansgar; Karpel-Massler, Georg und Halatsch, Marc-Eric (2016): Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen. In: Oncotargets and Therapy, Bd. 9: S. 2535-2545 [PDF, 493kB]

[thumbnail of 10.2147_OTT.S100407.pdf]
Vorschau
Download (493kB)

Abstract

To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs) (monocyte, macrophage, microglia, dendritic cells) that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%-30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic - minocycline, an antihypertensive drug - telmisartan, and a bisphosphonate - zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid - the MTZ Regimen - have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low drug cost. Four core observations support this approach: 1) malignant glioblastoma cells require a reciprocal trophic relationship with nonmalignant macrophages or microglia to thrive;2) glioblastoma cells secrete MCP-1 to start the cycle, attracting MLCs, which subsequently also secrete MCP-1 perpetuating the recruitment cycle;3) increasing cytokine levels in the tumor environment generate further immunosuppression and tumor growth;and 4) MTZ regimen may impede MCP-1-driven processes, thereby interfering with glioblastoma growth.

Dokument bearbeiten Dokument bearbeiten