Dies ist die neueste Version des Dokumentes.
Abstract
In most surveys, one is confronted with missing or, more generally, coarse data. Many methods dealing with these data make strong, untestable assumptions, e.g. coarsening at random. But due to the potentially resulting severe bias, interest increases in approaches that only include tenable knowledge about the coarsening process, leading to imprecise, but credible results. We elaborate such cautious methods for regression analysis with a coarse categorical dependent variable and precisely observed categorical covariates. Our cautious results from the German panel study "Labour market and social security'' illustrate that traditional methods may even pretend specific signs of the regression estimates.
Dokumententyp: | Paper |
---|---|
Keywords: | coarse data, (cumulative) logit model, missing data, partial identification, PASS data, (profile) likelihood |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Technische Reports |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
JEL Classification: | C83 |
URN: | urn:nbn:de:bvb:19-epub-41600-7 |
Sprache: | Deutsch |
Dokumenten ID: | 41600 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Jan. 2018, 08:30 |
Letzte Änderungen: | 04. Nov. 2020, 13:17 |
Alle Versionen dieses Dokumentes
-
Towards a reliable categorical regression analysis for non-randomly coarsened observations: An analysis with German labour market data. (deposited 29. Nov. 2017, 08:21)
- Towards a reliable categorical regression analysis for non-randomly coarsened observations: An analysis with German labour market data. (deposited 16. Jan. 2018, 08:30) [momentan angezeigt]