Logo Logo
Switch Language to German

Slawski, Martin; Daumer, Martin and Boulesteix, Anne-Laure (30. May 2008): CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data. Department of Statistics: Technical Reports, No.29 [PDF, 456kB]


For the last eight years, microarray-based class prediction has been a major topic in statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory results or may even be inapplicable in the p > n setting where the number of predictors by far exceeds the number of observations, hence the term “ill-posed-problem”. Careful model selection and evaluation satisfying accepted good-practice standards is a very complex task for inexperienced users with limited statistical background or for statisticians without experience in this area. The multiplicity of available methods for class prediction based on high-dimensional data is an additional practical challenge for inexperienced researchers. In this article, we introduce a new Bioconductor package called CMA (standing for “Classification for MicroArrays”) for automatically performing variable selection, parameter tuning, classifier construction, and unbiased evaluation of the constructed classifiers using a large number of usual methods. Without much time and effort, users are provided with an overview of the unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation framework underlying CMA can also be beneficial in statistical research for comparison purposes, for instance if a new classifier has to be compared to existing approaches. CMA is a user-friendly comprehensive package for classifier construction and evaluation implementing most usual approaches. It is freely available from the Bioconductor website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html.

Actions (login required)

View Item View Item