Logo Logo
Hilfe
Hilfe
Switch Language to English

Bein, Thomas und Yan, Yongan (1993): Molecular recognition on acoustic wave devices. Zeolite thin films coated with organosilane gate layers. In: Microporous Materials, Bd. 1, Nr. 6: S. 401-411 [PDF, 1MB]

[thumbnail of 4213.pdf]
Vorschau
Download (1MB)

Abstract

Microporous thin films composed of a molecular coupling layer, zeolite crystals, and a porous silica overlayer, were formed on the gold electrodes of quartz crystal microbalances (QCMs). The silica overlayer enhances the mechanical stability of the zeolite films, and results in additional surface area and porosity as characterized by the sorption isotherms and transient sorption of vapors with different molecular diameters and different polarities. The protecting silica glass layer is gas permeable such that the regular zeolite micropores with molecular sieving capability are still accessible in the composite film. A novel surface tailoring technique for the microporous thin films was developed, in which organosilane molecules were chemisorbed on the silica overlayer via siloxane linkages, forming a molecular "gate" at the gas thin film interface. The adsorption of vapors into the microporous zeolite films is therefore controlled by the permeability of the gate layer. Selective adsorption based on kinetic or equilibrium exclusion from the microporous films could be achieved, as demonstrated by discrimination of molecules with similar polarity but different molecular diameters (water vs. ethanol), and effective exclusion of larger molecules such as rt-hexane. As a result of the increase in the vapor sorption selectivity and reduction of the external surface area of the thin films, the modified QCMs show high selectivity towards water over other molecules. Keywords: acoustic wave device; sensor; zeolite film; organosilane coating; humidity sensing

Dokument bearbeiten Dokument bearbeiten