Abstract
In any model of typed λ-calculus conianing some basic arithmetic, a functional p - * (procedure—* expression) will be defined which inverts the evaluation functional for typed X-terms, Combined with the evaluation functional, p-e yields an efficient normalization algorithm. The method is extended to X-calculi with constants and is used to normalize (the X-representations of) natural deduction proofs of (higher order) arithmetic. A consequence of theoretical interest is a strong completeness theorem for βη-reduction, generalizing results of Friedman [1] and Statman [31: If two Xterms have the same value in some model containing representations of the primitive recursive functions (of level 1) then they are provably equal in the βη- calculus.
Dokumententyp: | Konferenzbeitrag (Anderer) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-4261-0 |
Sprache: | Englisch |
Dokumenten ID: | 4261 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2008, 13:08 |
Letzte Änderungen: | 13. Aug. 2024, 12:40 |