Abstract
Herdan-Heaps law and Lotka's law are two important laws in linguistics and many other fields, which are often found to coexist in many languages. Herdan-Heaps law describes the type-token relation between number of distinct words and text length. Lotka's law concerns the fraction of words with a given number of word occurrences. Utilising a variant of the Simon model, this work demonstrates that if the growth rate of different words follow Herdan-Heaps law, with an exponent in the interval (0,1), then the exponents of Lotka's law and Herdan-Heaps law are identical. A biparameter power law distribution, i.e. the Waring distribution, is derived within the framework of Simon's model. Estimators of the Waring distribution parameters are determined and numerical illustrations are provided.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Betriebswirtschaft |
Themengebiete: | 300 Sozialwissenschaften > 330 Wirtschaft |
ISSN: | 0929-6174 |
Sprache: | Englisch |
Dokumenten ID: | 43418 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:03 |
Letzte Änderungen: | 15. Dez. 2020, 09:32 |