Logo Logo
Switch Language to German
Zwergal, Andreas; Schlichtiger, Julia; Xiong, Guoming; Beck, Roswitha; Günther, Lisa; Schniepp, Roman; Schöberl, Florian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Bartenstein, Peter; Dieterich, Marianne; Dutia, Mayank B.; La Fougère, Christian (2016): Sequential [F-18]FDG A mu PET whole-brain imaging of central vestibular compensation: a model of deafferentation-induced brain plasticity. In: Brain Structure & Function, Vol. 221, No. 1: pp. 159-170
Full text not available from 'Open Access LMU'.


Unilateral inner ear damage is followed by a rapid behavioural recovery due to central vestibular compensation. In this study, we utilized serial [F-18]Fluoro-deoxyglucose ([F-18]FDG)-A mu PET imaging in the rat to visualize changes in brain glucose metabolism during behavioural recovery after surgical and chemical unilateral labyrinthectomy, to determine the extent and time-course of the involvement of different brain regions in vestibular compensation and test previously described hypotheses of underlying mechanisms. Systematic patterns of relative changes of glucose metabolism (rCGM) were observed during vestibular compensation. A significant asymmetry of rCGM appeared in the vestibular nuclei, vestibulocerebellum, thalamus, multisensory vestibular cortex, hippocampus and amygdala in the acute phase of vestibular imbalance (4 h). This was followed by early vestibular compensation over 1-2 days where rCGM re-balanced between the vestibular nuclei, thalami and temporoparietal cortices and bilateral rCGM increase appeared in the hippocampus and amygdala. Subsequently over 2-7 days, rCGM increased in the ipsilesional spinal trigeminal nucleus and later (7-9 days) rCGM increased in the vestibulocerebellum bilaterally and the hypothalamus and persisted in the hippocampus. These systematic dynamic rCGM patterns during vestibular compensation, were confirmed in a second rat model of chemical unilateral labyrinthectomy by serial [F-18]FDG-A mu PET. These findings show that deafferentation-induced plasticity after unilateral labyrinthectomy involves early mechanisms of re-balancing predominantly in the brainstem vestibular nuclei but also in thalamo-cortical and limbic areas, and indicate the contribution of spinocerebellar sensory inputs and vestibulocerebellar adaptation at the later stages of behavioural recovery.