Logo Logo
Switch Language to English
Diemoz, Paul C.; Bravin, Alberto; Sztrókay-Gaul, Anikó; Ruat, Marie; Grandl, Susanne; Mayr, Doris; Auweter, Sigrid; Mittone, Alberto; Brun, Emmanuel; Ponchut, Cyril; Reiser, Maximilian F.; Coan, Paola; Olivo, Alessandro (2016): A method for high-energy, low-dose mammography using edge illumination x-ray phase-contrast imaging. In: Physics in Medicine and Biology, Vol. 61, Nr. 24, UNSP 8750
Volltext auf 'Open Access LMU' nicht verfügbar.


Since the breast is one of the most radiosensitive organs, mammography is arguably the area where lowering radiation dose is of the uttermost importance. Phase-based x-ray imaging methods can provide opportunities in this sense, since they do not require x-rays to be stopped in tissue for image contrast to be generated. Therefore, x-ray energy can be considerably increased compared to those usually exploited by conventional mammography. In this article we show how a novel, optimized approach can lead to considerable dose reductions. This was achieved by matching the edge-illumination phase method, which reaches very high angular sensitivity also at high x-ray energies, to an appropriate image processing algorithm and to a virtually noise-free detection technology capable of reaching almost 100% efficiency at the same energies. Importantly, while proof-of-concept was obtained at a synchrotron, the method has potential for a translation to conventional sources.