Abstract
Aseptic loosening mediated by wear particle induced osteolysis (PIO) remains the major cause of implant loosening in endoprosthetic surgery. The development of new vitamin E (alpha-tocopherol)-blended ultra-high molecular weight polyethylene (VE-UHMWPE) with increased oxidation resistance and improved mechanical properties has raised hopes. Furthermore, regenerative approaches may be opened, as vitamin E supplementation has shown neuroprotective characteristics mediated via calcitonin gene-related peptide (CGRP), which is known to affect bone remodeling in PIO. Therefore, the present study aimed to further clarify the impact of VE-UHMWPE wear particles on the osseous micro environment and to identify the potential modulatory pathways involved. Using an established murine calvaria model, mice were subjected to sham operation (SHAM group), or treated with UHMWPE or VE-UHMWPE particles for different experimental durations (7, 14 and 28 days;n=6/group). Morphometric analysis by micro-computed tomography detected significant (p<0.01) and comparable signs of PIO in all particle-treated groups, whereas markers of inflammation [tumor necrosis factor (TNF)-alpha/tartrate resistant acid phosphatase (TRAP) staining] and bone remodeling [Dickkopf-related protein 1 (DKK-1)/osteoprotegerin (OPG)] were most affected in the early stages following surgery. Taking the present data into account, VE-UHMWPE appears to have a promising biocompatibility and increased ageing resistance. According to the alpha-CGRP serum levels and immunohistochemistry, the impact of vitamin E on neuropeptidergic signaling and its chance for regenerative approaches requires further investigation.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
ISSN: | 1107-3756 |
Language: | English |
Item ID: | 46128 |
Date Deposited: | 27. Apr 2018, 08:10 |
Last Modified: | 04. Nov 2020, 13:22 |