Logo Logo
Switch Language to German

Fottner, Andreas; Nies, Berthold; Kitanovic, Denis; Steinbrück, Arnd; Mayer-Wagner, Susanne; Schröder, Christian; Heinemann, Sascha; Pohl, Ulrich and Jansson, Volkmar (2016): Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation. In: Journal of Materials Science-Materials in Medicine, Vol. 27, No. 9, 138

Full text not available from 'Open Access LMU'.


In the past, bioactive bone cement was investigated in order to improve the durability of cemented arthroplasties by strengthening the bone-cement interface. As direct bone-cement bonding may theoretically lead to higher stresses within the cement, the question arises, whether polymethylmethacrylate features suitable mechanical properties to withstand altered stress conditions? To answer this question, in vivo experiments and finite element simulations were conducted. Twelve rabbits were divided into two groups examining either bioactive polymethylmethacrylate-based cement with unchanged mechanical properties or commercially available polymethylmethacrylate cement. The cements were tested under load-bearing conditions over a period of 7 months, using a spacer prosthesis cemented into the femur. For the finite element analyses, boundary conditions of the rabbit femur were simulated and analyses were performed with respect to different loading scenarios. Calculations of equivalent stress distributions within the cements were applied, with a completely bonded cement surface for the bioactive cement and with a continuously interfering fibrous tissue layer for the reference cement. The bioactive cement revealed good in vivo bioactivity. In the bioactive cement group two failures (33%), with complete break-out of the prosthesis occurred, while none in the reference group. Finite element analyses of simulated bioactive cement fixation showed an increase in maximal equivalent stress by 49.2 to 109.4% compared to the simulation of reference cement. The two failures as well as an increase in calculated equivalent stress highlight the importance of fatigue properties of polymethylmethacrylate in general and especially when developing bioactive cements designated for load-bearing conditions.

Actions (login required)

View Item View Item