Abstract
We present a Resource-Aware Model-Based Optimization framework RAMBO that leads to efficient utilization of parallel computer architectures through resource-aware scheduling strategies. Conventional MBO fits a regression model on the set of already evaluated configurations and their observed performances to guide the search. Due to its inherent sequential nature, an efficient parallel variant can not directly be derived, as only the most promising configuration w.r.t. an infill criterion is evaluated in each iteration. This issue has been addressed by generalized infill criteria in order to propose multiple points simultaneously for parallel execution in each sequential step. However, these extensions in general neglect systematic runtime differences in the configuration space which often leads to underutilized systems. We estimate runtimes using an additional surrogate model to improve the scheduling and demonstrate that our framework approach already yields improved resource utilization on two exemplary classification tasks.
Item Type: | Book Section |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Computer Science |
Subjects: | 000 Computer science, information and general works > 004 Data processing computer science |
ISBN: | 978-3-319-50348-6; 978-3-319-50349-3 |
Place of Publication: | Cham |
Language: | English |
Item ID: | 47351 |
Date Deposited: | 27. Apr 2018, 08:12 |
Last Modified: | 13. Aug 2024, 12:54 |