Abstract
We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions driven by a multiplicative stochastic forcing. In particular, we consider a stochastic perturbation of the system as a function of momentum and density. We establish existence of a so-called finite energy weak martingale solution under the condition that the adiabatic exponent satisfies gamma > 3/2. The proof is based on a four-layer approximation scheme together with a refined stochastic compactness method and a careful identification of the limit procedure.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0022-2518 |
Sprache: | Englisch |
Dokumenten ID: | 47393 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:12 |
Letzte Änderungen: | 13. Aug. 2024, 12:41 |