Abstract
We show that any co-orientable foliation of dimension two on a closed orientable 3-manifold with continuous tangent plane field can be C-0-approximated by both positive and negative contact structures unless all leaves of the foliation are simply connected. As applications we deduce that the existence of a taut C-0-foliation implies the existence of universally tight contact structures in the same homotopy class of plane fields and that a closed 3-manifold that admits a taut C-0-foliation of codimension-1 is not an L-space in the sense of Heegaard-Floer homology.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1016-443X |
Sprache: | Englisch |
Dokumenten ID: | 47410 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:12 |
Letzte Änderungen: | 04. Nov. 2020, 13:24 |