Abstract
We study the local epsilon constant conjecture as formulated by Breuning in Breuning (J London Math Soc 70(2):289-306, 2004). This conjecture fits into the general framework of the equivariant Tamagawa number conjecture (ETNC) and should be interpreted as a consequence of the expected compatibility of the ETNC with the functional equation of Artin-L-functions. Let be unramified. Under some mild technical assumption we prove Breuning's conjecture for weakly ramified abelian extensions N / K with cyclic ramification group. As a consequence of Breuning's local-global principle we obtain the validity of the global epsilon constant conjecture as formulated in Bley and Burns (Proc Lond Math Soc 87(3):545-590, 2003) and of Chinburg's -conjecture as stated in Chinburg (Ann Math 121(2):351-376, 1985) for certain infinite families F / E of weakly and wildly ramified extensions of number fields.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0025-5874 |
Sprache: | Englisch |
Dokumenten ID: | 47414 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:13 |
Letzte Änderungen: | 13. Aug. 2024, 12:41 |