Abstract
For n is an element of{2, 3} we prove minimax characterisations of eigenvalues in the gap of the n dimensional Dirac operator with an potential, which may have a Coulomb singularity with a coupling constant up to the critical value 1/(4 - n). This result implies a so-called Hardy-Dirac inequality, which can be used to define a distinguished self-adjoint extension of the Coulomb-Dirac operator defined on C-0(infinity)(R-n \ {0};C2(n-1)) as long as the coupling constant does not exceed 1/(4 - n). We also find an explicit description of an operator core of this operator.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1431-0643 |
Sprache: | Englisch |
Dokumenten ID: | 47416 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:13 |
Letzte Änderungen: | 27. Apr. 2018, 08:13 |