Abstract
We consider Sturm-Liouville operators with measure-valued weight and potential, and positive, bounded diffusion coefficient which is bounded away from zero. By means of a local periodicity condition, which can be seen as a quantitative Gordon condition, we prove a bound on eigenvalues for the corresponding operator in L-P, for 1 <= p < infinity. We also explain the sharpness of our quantitative bound, and provide an example for quasiperiodic operators.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 1385-0172 |
| Sprache: | Englisch |
| Dokumenten ID: | 47440 |
| Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018 08:13 |
| Letzte Änderungen: | 04. Nov. 2020 13:24 |
