Abstract
In this paper we study the hedging of typical life insurance payment processes in a general setting by means of the well-known risk-minimization approach. We find the optimal risk-minimizing strategy in a financial market where we allow for investments in a hedging instrument based on a longevity index, representing the systematic mortality risk. Thereby we take into account and model the basis risk that arises due to the fact that the insurance company cannot perfectly hedge its exposure by investing in a hedging instrument that is based on the longevity index, not on the insurance portfolio itself. We also provide a detailed example within the context of unit-linked life insurance products where the dependency between the index and the insurance portfolio is described by means of an affine mean-reverting diffusion process with stochastic drift.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Mathematics > Workgroup Financial Mathematics |
Subjects: | 500 Science > 510 Mathematics |
ISSN: | 1862-9679 |
Language: | English |
Item ID: | 47448 |
Date Deposited: | 27. Apr 2018, 08:13 |
Last Modified: | 22. Feb 2024, 09:05 |