Abstract
We study the bicategory of Landau-Ginzburg models, which has polynomials as objects and matrix factorisations as 1-morphisms. Our main result is the existence of adjoints in this bicategory and formulas for the evaluation and coevaluation maps in terms of Atiyah classes and homological perturbation. The bicategorical perspective offers a unified approach to Landau-Ginsburg models: we show how to compute arbitrary correlators and recover the full structure of open/closed TFT, including the Kapustin-Li disc correlator and a simple proof of the Cardy condition, in terms of defect operators which in turn are directly computable from the adjunctions. (C) 2015 ELSEVIER. All rights reserved.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
ISSN: | 0001-8708 |
Language: | English |
Item ID: | 47468 |
Date Deposited: | 27. Apr 2018, 08:13 |
Last Modified: | 08. May 2024, 09:23 |