Logo Logo
Switch Language to German

Carqueville, Nils and Murfet, Daniel (2016): Adjunctions and defects in Landau Ginzburg models. In: Advances in Mathematics, Vol. 289: pp. 480-566

Full text not available from 'Open Access LMU'.


We study the bicategory of Landau-Ginzburg models, which has polynomials as objects and matrix factorisations as 1-morphisms. Our main result is the existence of adjoints in this bicategory and formulas for the evaluation and coevaluation maps in terms of Atiyah classes and homological perturbation. The bicategorical perspective offers a unified approach to Landau-Ginsburg models: we show how to compute arbitrary correlators and recover the full structure of open/closed TFT, including the Kapustin-Li disc correlator and a simple proof of the Cardy condition, in terms of defect operators which in turn are directly computable from the adjunctions. (C) 2015 ELSEVIER. All rights reserved.

Actions (login required)

View Item View Item