Abstract
Aircraft observations of wind and temperature collected by airport surveillance radars [Mode-S Enhanced Surveillance (Mode-S EHS)] were assimilated in the Consortium for Small-Scale Modeling Kilometre-scale Ensemble Data Assimilation (COSMO-KENDA), which couples an ensemble Kalman filter to a 40-member ensemble of the convection permitting COSMO-DE model. The number of observing aircrafts in Mode-S EHS was about 15 times larger than in the AMDAR system. In the comparison of both aircraft observation systems, a similar observation error standard deviation was diagnosed for wind. For temperature, a larger error was diagnosed for Mode-S EHS. With the high density of Mode-S EHS observations, a reduction of temperature and wind error in forecasts of 1 and 3 hours was found mainly in the flight level and less near the surface. The amount of Mode-S EHS data was reduced by random thinning to test the effect of a varying observation density. With the current data assimilation setup, a saturation of the forecast error reduction was apparent when more than 50% of the Mode-S EHS data were assimilated. Forecast kinetic energy spectra indicated that the reduction in error is related to analysis updates on all scales resolved by COSMO-DE.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0027-0644 |
Sprache: | Englisch |
Dokumenten ID: | 47513 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:13 |
Letzte Änderungen: | 08. Mai 2024, 09:25 |