Abstract
We have studied the dissociative ionization of DCl in 4 fs laser fields at 720 nm central wavelength using intensities in the range (1.3-3.1) x 10(14) W cm(-2). By employing the phase-tagged velocity-map imaging technique, information about the angular distribution of deuterium ions as a function of their kinetic energy and the carrier-envelope phase is obtained. On the basis of the experimental data and semi-classical simulations, three regions are distinguished for the resulting D+ ions with different kinetic energies. The one with the lowest kinetic energy, around 5-7 eV, is from dissociation involving the X-state of DCl+, populated through direct ionization with the laser field. The second region, around 7-11 eV, originates from rescattering induced dissociative ionization. Above 2 x 10(14) W cm(-2) D+ ions with kinetic energies exceeding 15 eV are obtained, which we ascribe to double ionization induced by rescattered electrons.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0953-4075 |
Sprache: | Englisch |
Dokumenten ID: | 47541 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:13 |
Letzte Änderungen: | 08. Mai 2024, 09:25 |