Logo Logo
Switch Language to German

Simon, Thomas; Carlson, Michael T.; Stolarczyk, Jacek K. and Feldmann, Jochen (2016): Electron Transfer Rate vs Recombination Losses in Photocatalytic H-2 Generation on Pt-Decorated CdS Nanorods. In: ACS Energy Letters, Vol. 1, No. 6: pp. 1137-1142

Full text not available from 'Open Access LMU'.


Cadmium chalcogenide nanocrystals combined with co-catalyst nano particles hold promise for efficient solar to hydrogen conversion. Despite the progress, achieving high efficiency is hampered by high charge recombination rates and sample degradation. Here, we vary the decoration of platinum nanoparticles on CdS nanorods to demonstrate the important role of pathways for the photoelectrons to the co-catalyst. Contrary to expectations, the shortening of the path, by increasing the number of co-catalyst particles, increases the transfer rate but decreases the photocatalytic performance. This is because subsequent electron transfer to the acceptor is much slower;therefore, the recombination rate with the nearby holes increases. We show that with tip-decorated nanorods, the quantum yield of production can reach and sustain nearly 90%, provided an efficient mechanism of mediated hole extraction is employed. The approach demonstrates that highly efficient photocatalysts may be prepared with only a minimal amount of co-catalyst and thereby suggests future pathways for solar to H-2 conversion with semiconductor nanocrystals.

Actions (login required)

View Item View Item