Abstract
Motivated by a recent optical-lattice experiment by Choi et al. [Science 352, 1547 (2016)], we discuss how domain-wall melting can be used to investigate many-body localization. First, by considering noninteracting fermion models, we demonstrate that experimentally accessible measures are sensitive to localization and can thus be used to detect the delocalization-localization transition, including divergences of characteristic length scales. Second, using extensive time-dependent density matrix renormalization group simulations, we study fermions with repulsive interactions on a chain and a two-leg ladder. The extracted critical disorder strengths agree well with the ones found in existing literature.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
ISSN: | 2469-9950 |
Language: | English |
Item ID: | 47569 |
Date Deposited: | 27. Apr 2018, 08:13 |
Last Modified: | 07. May 2024, 17:38 |