Abstract
We test the imprint of f(R) modified gravity on the halo mass function, using N-body simulations and a theoretical model developed in [M. Kopp et al., Phys. Rev. D 88, 084015 (2013)]. We find a good agreement between theory and simulations similar to 5%. We extend the theoretical model to the conditional mass function and apply it to the prediction of the linear halo bias in f(R) gravity. Using the halo model we obtain a prediction for the nonlinear matter power spectrum accurate to similar to 10% at z = 0 and up to k = 2h/Mpc. We also study halo profiles for the f(R) models and find a deviation from the standard general relativity (GR) result up to 40%, depending on the halo masses and redshift. This has not been pointed out in previous analysis. Finally we study the number density and profiles of voids identified in these f(R) N-body simulations. We underline the effect of the bias and the sampling to identify voids. We find significant deviation from GR when measuring the f(R) void profiles with f(R0) < -10(-6).
Item Type: | Journal article |
---|---|
Faculties: | Physics > Astronomy and astrophysics, cosmology |
Subjects: | 500 Science > 530 Physics |
ISSN: | 2470-0010 |
Language: | English |
Item ID: | 47626 |
Date Deposited: | 27. Apr 2018, 08:13 |
Last Modified: | 09. Sep 2024, 12:32 |