Abstract
We report on the experimental implementation of a spin pump with ultracold bosonic atoms in an optical superlattice. In the limit of isolated double wells, it represents a 1D dynamical version of the quantum spin Hall effect. Starting from an antiferromagnetically ordered spin chain, we periodically vary the underlying spin-dependent Hamiltonian and observe a spin current without charge transport. We demonstrate a novel detection method to measure spin currents in optical lattices via superexchange oscillations emerging after a projection onto static double wells. Furthermore, we directly verify spin transport through in situ measurements of the spins' center-of-mass displacement.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
ISSN: | 0031-9007 |
Language: | English |
Item ID: | 47643 |
Date Deposited: | 27. Apr 2018, 08:13 |
Last Modified: | 07. May 2024, 18:20 |