Abstract
Giant clumps are a characteristic feature of observed high-redshift disk galaxies. We propose that these kiloparsec-sized clumps have a complex substructure and are the result of many smaller clumps self-organizing themselves into clump clusters (CCs). This bottom-up scenario is in contrast to the common top-down view that these giant clumps form first and then sub-fragment. Using a high-resolution hydrodynamical simulation of an isolated, fragmented massive gas disk and mimicking the observations from Genzel et al. at z similar to 2, we find remarkable agreement in many details. The CCs appear as single entities of sizes R-HWHM similar or equal to 0.9-1.4 kpc and masses similar to(1.5-3) x 10(9) M-circle dot, representative of high-z observations. They are organized in a ring around the center of the galaxy. The origin of the observed clumps' high intrinsic velocity dispersion sigma(intrinsic) similar or equal to 50-100 km s(-1) is fully explained by the internal irregular motions of their substructure in our simulation. No additional energy input, e.g., via stellar feedback, is necessary. Furthermore, in agreement with observations, we find a small velocity gradient V-grad similar or equal to 8-27 km s(-1) kpc(-1) along the CCs in the beam-smeared velocity residual maps, which corresponds to net prograde and retrograde rotation with respect to the rotation of the galactic disk. The CC scenario could have strong implications for the internal evolution, lifetimes, and the migration timescales of the observed giant clumps, bulge growth, and active galactic nucleus activity, stellar feedback, and the chemical enrichment history of galactic disks.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 2041-8205 |
Sprache: | Englisch |
Dokumenten ID: | 47796 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:13 |
Letzte Änderungen: | 04. Nov. 2020, 13:24 |