Logo Logo
Switch Language to German

Shu, X. W.; Elbaz, D.; Bourne, N.; Schreiber, C.; Wang, T.; Dunlop, J. S.; Fontana, A.; Leiton, R.; Pannella, M.; Okumura, K.; Michalowski, M. J.; Santini, P.; Merlin, E.; Buitrago, F.; Bruce, V. A.; Amorin, R.; Castellano, M.; Derriere, S.; Comastri, A.; Cappelluti, N.; Wang, J. X. and Ferguson, H. C. (2016): Identification of z > or ~ 2 Herschel 500 μm sources using color deconfusion. In: Astrophysical Journal Supplement Series, Vol. 222, No. 1, 4

Full text not available from 'Open Access LMU'.


We present a new method to search for candidate z greater than or similar to 2. Herschel. 500 mu m sources in the Great Observatories Origins Deep Survey-North field using a S-500 mu m/S-24 mu m "color deconfusion" technique. Potential high-z sources are selected against low-redshift ones from their large 500 to 24 mu m flux density ratios. By effectively reducing the contribution from low-redshift populations to the observed 500 mu m emission, we are able to identify counterparts to high-z 500 mu m sources whose 24 mu m fluxes are relatively faint. The recovery of known z greater than or similar to 4 starbursts confirms the efficiency of this approach in selecting high-z. Herschel. sources. The resulting sample consists of 34 dusty star-forming galaxies at z greater than or similar to 2. The inferred infrared luminosities are in the range 1.5 x 10(12)-1.8 x 10(13) L-circle dot, corresponding to dust-obscured star formation rates (SFRs) of similar to 260-3100 M-circle dot yr(-1) for a Salpeter initial mass function. Comparison with previous SCUBA 850 mu m-selected galaxy samples shows that our method is more efficient at selecting high-z dusty galaxies, with a median redshift of z = 3.07 +/- 0.83 and with 10 of the sources at z greater than or similar to 4. We find that at a fixed luminosity, the dust temperature is similar to 5 K cooler than that expected from theT(d) -L-IR relation at z less than or similar to 1, though different temperature selection effects should be taken into account. The radio-detected subsample (excluding three strong active galactic nucleus) follows the far-infrared (far-IR)/radio correlation at lower redshifts, and no evolution with redshift is observed out to z similar to 5, suggesting that the far-IR emission is star formation dominated. The contribution of the high-z. Herschel 500 mu m sources to the cosmic SFR density is comparable to that of (sub)millimeter galaxy populations at z similar to 2.5 and at least 40% of the extinction-corrected UV samples at z similar to 4. Further investigation into the nature of these high-z dusty galaxies will be crucial for our understanding of the star formation histories and the buildup of stellar mass at the earliest cosmic epochs.

Actions (login required)

View Item View Item