Abstract
We study the stellar, brightest cluster galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and mass M-500 = 6 x 10(14) M-circle dot. We estimate stellar masses for each cluster and BCG using six photometric bands, the ICM mass using X-ray observations and the virial masses using the SPT Sunyaev-Zel'dovich effect signature. At z = 0.9, the BCG mass M-*(BCG) constitutes 0.12 +/- 0.01 per cent of the halo mass for a 6 x 10(14) M-circle dot cluster, and this fraction falls as M-500(-0.58 +/- 0.07). The cluster stellar mass function has a characteristic mass M-0 = 10(11.0 +/- 0.1) M-circle dot, and the number of galaxies per unit mass in clusters is larger than in the field by a factor of 1.65 +/- 0.20. We combine our SPT sample with previously published samples at low redshift and correct to a common initial mass function and for systematic virial mass differences. We then explore mass and redshift trends in the stellar fraction f(*), the ICM fraction f(ICM), the collapsed baryon fraction f(c) and the baryon fraction f(b). At a pivot mass of 6 x 10(14) M-circle dot and redshift z = 0.9, the characteristic values are f(*) = 1.1 +/- 0.1 per cent, f(ICM) = 9.6 +/- 0.5 per cent, f(c) = 10.7 +/- 1.1 per cent and f(b) = 10.7 +/- 0.6 per cent. These fractions all vary with cluster mass at high significance, with higher mass clusters having lower f(*) and f(c) and higher f(ICM) and f(b). When accounting for a 15 per cent systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass. Our results support the scenario where clusters grow through accretion from subclusters (higher f(*), lower f(ICM)) and the field (lower f(*), higher f(ICM)), balancing to keep f(*) and f(ICM) approximately constant since z similar to 0.9.
Item Type: | Journal article |
---|---|
Faculties: | Physics |
Subjects: | 500 Science > 530 Physics |
ISSN: | 0035-8711 |
Language: | English |
Item ID: | 47919 |
Date Deposited: | 27. Apr 2018, 08:14 |
Last Modified: | 04. Nov 2020, 13:25 |