Abstract
The temperature dependent stability of the magnetic phases of FeRh were investigated by means of total energy calculations with magnetic disorder treated within the uncompensated disordered local moment approach. In addition, Monte Carlo simulations based on the extended Heisenberg model have been performed, using exchange coupling parameters obtained from first principles. The crucial role and interplay of two factors in the metamagnetic transition in FeRh has been revealed, namely the dependence of the Fe-Fe exchange coupling parameters on the temperature-governed degree of magnetic disorder in the system and the stabilizing nature of the induced magnetic moment on Rh-sites. An important observation is the temperature dependence of these two competing factors.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Chemistry |
Subjects: | 500 Science > 540 Chemistry |
ISSN: | 2469-9950 |
Language: | English |
Item ID: | 48184 |
Date Deposited: | 27. Apr 2018, 08:14 |
Last Modified: | 04. Nov 2020, 13:25 |