Logo Logo
Help
Contact
Switch Language to German

Braun, J.; Rausch, R.; Potthoff, M. and Ebert, H. (2016): One-step theory of two-photon photoemission. In: Physical Review B, Vol. 94, No. 12, 125128

Full text not available from 'Open Access LMU'.

Abstract

A theoretical frame for two-photon photoemission is derived from the general theory of pump-probe photoemission, assuming that not only the probe but also the pump pulse is sufficiently weak. This allows us to use a perturbative approach to compute the lesser Green function within the Keldysh formalism. Two-photon photoemission spectroscopy is a widely used analytical tool to study nonequilibrium phenomena in solid materials. Our theoretical approach aims at a material-specific, realistic, and quantitative description of the time-dependent spectrum based on a picture of effectively independent electrons as described by the local-density approximation in band-structure theory. To this end we follow Pendry's one-step theory of the photoemission process as close as possible and heavilymake use of concepts of relativistic multiple-scattering theory, such as the representation of the final state by a time-reversed low-energy electron diffraction state. The formalism allows for a quantitative calculation of the time-dependent photocurrent for moderately correlated systems like simplemetals or more complex compounds like topological insulators. An application to the Ag(100) surface is discussed in detail.

Actions (login required)

View Item View Item