Logo Logo
Hilfe
Hilfe
Switch Language to English

Kronenberg, A.; Braun, J.; Minár, J.; Elmers, H.-J.; Kutnyakhov, D.; Zaporozhchenko, A. V.; Wallauer, R.; Chernov, S.; Medjanik, K.; Schönhense, G.; Kläui, M.; Chadov, S.; Ebert, H. und Jourdan, M. (2016): Dirac cone and pseudogapped density of states in the topological half-Heusler compound YPtBi. In: Physical Review B, Bd. 94, Nr. 16, 161108

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Topological insulators (TIs) are exciting materials, which exhibit unprecedented properties, such as helical spin-momentum locking, which leads to large torques for magnetic switching and highly efficient spin current detection. Here we explore the compound YPtBi, an example from the class of half-Heusler materials, for which the typical band inversion of topological insulators was predicted. We prepared this material as thin films by conventional cosputtering from elementary targets. By in situ time-of-flight momentum microscopy, a Dirac conelike surface state with a Dirac point similar or equal to 300 meV below the Fermi energy was observed, in agreement with electronic structure-photoemission calculations. Only little additional spectral weight due to other states was observed at E-F, which corroborates the identification of the topologically protected surface state and is highly relevant for spintronics applications.

Dokument bearbeiten Dokument bearbeiten