Abstract
The accurate description of cis/trans peptide structures is of fundamental relevance for the field of protein modeling and protein structure determination. A comprehensive conformational analysis of dipeptide model Ace-GlyNMe (1) has been carried out by using a combination of theoretical calculations and experimental (H-1 and C-13 NMR and NOESY) spectroscopic measurements to assess the relevance of cis-peptide conformers. NMR measurements in dimethyl sulfoxide (DMSO) solution and calculations employing a continuum solvation model both point to the extended trans,-trans conformer C5_tt as the global minimum. The cis-peptide structures C5_ct and C5_tc, with the N-or C-terminal amide group in cis-conformation, are observed separately and located 13.0 +/- 2 kJmol(-1) higher in energy. This is in close agreement with the theoretical prediction of around 12 kJmol(-1) in DMSO. The ability of common protein force fields to reproduce the energies of the cis-amide conformers C5_ct and C5_tc in 1 is limited, making these methods unsuitable for the description of cis-peptide structures in protein simulations.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 0947-6539 |
Sprache: | Englisch |
Dokumenten ID: | 48324 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2018, 08:15 |
Letzte Änderungen: | 04. Nov. 2020, 13:25 |