Logo Logo
Hilfe
Hilfe
Switch Language to English

Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias und Wintterlin, Joost (2016): Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction. In: Surface Science, Bd. 653: S. 143-152

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gasebus nickel tetracarbonyl in similar to 1 bar of CO at similar to 75 degrees C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer. (C) 2016 Elsevier B.V. All rights reserved.

Dokument bearbeiten Dokument bearbeiten