Logo Logo
Switch Language to German

Moiron, Maria; Mathot, Kimberley J. and Dingemanse, Niels J. (2016): A multi-level approach to quantify speed-accuracy trade-offs in great tits (Parus major). In: Behavioral Ecology, Vol. 27, No. 5: pp. 1539-1546

Full text not available from 'Open Access LMU'.


Are fast decisions less likely to be accurate? We tested for a trade-off between speed and accuracy in foraging great tits. We found support for a speed-accuracy trade-off among-individuals but not within-individuals. These findings thereby imply that these patterns were level-specific, and caused by multiple mechanisms acting simultaneously. This study may be used to guide further empirical studies focusing on level-specificity of relationships between behavioral and cognitive traits.Animals often face a conflict between the speed and accuracy by which a decision is made. Decisions taken quickly might be relatively inaccurate, whereas decisions taken more slowly might be more accurate. Such "speed-accuracy trade-offs" receive increasing attention in behavioral and cognitive sciences. Importantly, life-history theory predicts that trade-offs typically exist only at certain hierarchical levels, such as within rather than among individuals. We therefore examined within- and among-individual correlations in the speed and accuracy by which decisions are taken, using a foraging context in wild-caught great tits (Parus major) as a worked example. We find that great tits exhibit among-individual variation in speed-accuracy trade-offs: some individuals predictably made relatively slow but accurate decisions, whereas others were predictably faster but less accurate. We did not, however, find evidence for the trade-off at the within-individual level. These level-specific relationships imply that different mechanisms acted across levels. These findings highlight the need for future work on the integration of individual behavior and cognition across hierarchical levels.

Actions (login required)

View Item View Item