Abstract
ATP synthases in chloroplasts (cpATPase) and mitochondria (mtATPase) are responsible for ATP production during photosynthesis and oxidative phosphorylation, respectively. Both enzymes consist of two multi-subunit complexes, the membrane-bound coupling factor O and the soluble coupling factor 1. During cpATPase biosynthesis, several accessory factors facilitate subunit production and orchestrate complex assembly. Here, we describe a new auxiliary protein in Arabidopsis thaliana, which is required for cpATPase accumulation. AtCGLD11 (CONSERVED IN THEGREEN LINEAGE AND DIATOMS 11) is a protein without any known functional domain and shows dual localization to chloroplasts and mitochondria. Loss of AtCGLD11 function results in reduced levels of cpATPase and impaired photosynthetic performance with lower rates of ATP synthesis. In yeast two-hybrid experiments, AtCGLD11 interacts with the beta subunits of the cpATPase and mtATPase. Our results suggest that AtCGLD11 functions in F1 assembly during cpATPase biogenesis, while its role in mtATPase biosynthesis may not, or not yet, be essential.
Item Type: | Journal article |
---|---|
Faculties: | Biology > Department Biology I |
Research Centers: | Center for Integrated Protein Science Munich (CIPSM) |
Subjects: | 500 Science > 570 Life sciences; biology 500 Science > 540 Chemistry |
ISSN: | 1674-2052 |
Language: | English |
Item ID: | 48665 |
Date Deposited: | 27. Apr 2018, 08:15 |
Last Modified: | 04. Nov 2020, 13:26 |