Logo Logo
Help
Contact
Switch Language to German
Gaudin, D.; Taddeucci, J.; Houghton, B. F.; Orr, T. R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P. (2016): 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions. In: Geochemistry Geophysics Geosystems, Vol. 17, No. 10: pp. 4268-4275
Full text not available from 'Open Access LMU'.

Abstract

Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 108 in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.