Abstract
A striking feature of the Indian Ocean is a distinct geoid low south of India, pointing to a regionally anomalous mantle density structure. Equally prominent are rapid plate convergence rate variations between India and SE Asia, particularly in Late Cretaceous/Paleocene times. Both observations are linked to the central Neo-Tethys Ocean subduction history, for which competing scenarios have been proposed. Here we evaluate three alternative reconstructions by assimilating their associated time-dependent velocity fields in global high-resolution geodynamic Earth models, allowing us to predict the resulting seismic mantle heterogeneity and geoid signal. Our analysis reveals that a geoid low similar to the one observed develops naturally when a long-lived back-arc basin south of Eurasia's paleomargin is assumed. A quantitative comparison to seismic tomography further supports this model. In contrast, reconstructions assuming a single northward dipping subduction zone along Eurasia's margin or models incorporating a temporary southward dipping intraoceanic subduction zone cannot sufficiently reproduce geoid and seismic observations.
Item Type: | Journal article |
---|---|
Faculties: | Geosciences > Department of Earth and Environmental Sciences |
Subjects: | 500 Science > 550 Earth sciences and geology |
ISSN: | 0094-8276 |
Language: | English |
Item ID: | 48862 |
Date Deposited: | 27. Apr 2018, 08:16 |
Last Modified: | 04. Nov 2020, 13:26 |